

International Journal of Recent Advances in Science and Technology, 2014; 1(1):1-5
__

Nahar et al International Journal of Recent Advances in Science and Technology, 2014; 1(1): 1-5

www.ijrast.com 1

Automatic Parallelization: Predicaments in Computationally Expensive
Operations

Nahar Hashmukh Prayank*, Bhavsar, Dharmesh kumar Bhalchandra, Vishal Bhatnagar, Richa Tomer and

S.K. Agarwal

Department of Computer Science, Shri Venkateshwara University, Gajraula Distt- Amroha (U.P), India

ABSTRACT

The applications developed for parallelizing are either single file based programs or algorithm structures. The
commercial large scale application pose problems when performing automatic parallelization and needs to be
addressed and hence thought to be implausible. This paper tries to surface the impediments to be addressed so that
the parallelization techniques may be applied to these applications. Benchmark suite which are specifically
developed to expose the computing requirement and are well acclaimed in the industry have been adopted.
Benchmarks used are from High Performance Group of the Standard Performance rating Corporation (SPEC), both
parallel and serial versions of applications are used.
Automatic parallel serial codes are compared with its parallel variants in this paper. Parallelizing compiler is
employed that takes language (formula based) codes and inserts Open Multi-Processing directives around loops
determined to be autonomous. Different problems were faced by an automatic parallelizing compiler when dealing
with full applications procedures, optimizations based on superficial techniques, array input output and size
variations ,Multilanguage hurdles, extreme inclination to library (system defined functions) and endowment
accumulations. The results presented in this paper shall benefit parallelizing compilers with capabilities for
handling large scale science and engineering applications.

Keywords: Subroutines, Procedures, Parallelization, Compilers.

Introduction

Any programming language, compiler, operating
system and system architecture will finally have to
improve upon its functionality and performance for
applications that have commercial existence. In terms
of line of codes commercial applications are generally
voluminous. Benchmarks are available and are used in
the field of systems research. Best are characterized by
low execution times and availability in public arena.
The runtime should be short as possible because under
research a piece of code may be run number of times.

*Correspondence

Nahar Hashmukh Prayank
Department of Computer Science, Shri Venkateshwara
University, Gajraula Distt- Amroha (U.P), India

The results are only important if the program is
available to everyone i.e. public arena availability so
that they may be mimeographed.

This paper aims to advance automatic parallelization
technology for computers systems possessing high
performance. Programs with high end commercial
application weightage are been adopted. Applications
used are from SPEC benchmark suite. These
applications are rather relevant in commercial arena
and can be reproduced and shared candidly.

First application [1] was developed by ARCO
beginning in 1993 to gain an accurate measure of the
performance of computing systems and it relates to the
seismic processing industry for procurement of new
computing resources.

International Journal of Recent Advances in Science and Technology, 2014; 1(1):1-5
__

Nahar et al International Journal of Recent Advances in Science and Technology, 2014; 1(1): 1-5

www.ijrast.com 2

The second application, [2] is used to simulate
molecules at the quantum level. It is a current research
effort under the name of GAMESS at the Gordon
Research Group of Iowa State University and is of
interest to the pharmaceutical industry. Both
application are extensively used to illustrate
performance of high end - high performance
computers.

This paper contributes in surfacing the eloquent
obstacles posed from automatic parallelization to the
most promising commercially accepted and driven
applications. Polaris translator [3], an avant-grade
parallelizing compiler to used .OpenMP was engaged
and both the applications are manually parallelized.
The results are thoroughly analyzed. Next Section,
describes five categories of challenges faced by
parallelizing compilers [4]. Sections 2.1 describe issues
arising from the fact that large applications naturally
have a very modular structure. Section 2.2 indicates the
lingual hurdles due to excessive adoption of languages
of different levels. Section 2.3 discusses about the
endowment accumulation problem. Section 2.4 deals
with the issue of array variations in terms of size and
subroutine interactions; and Section 2.5 describes
problems in the presence of input output operations.
Section 4 concludes the paper.

 Impediments of Automatic Parallelizing Compilers

High end applications shows little accomplishment
after being acted upon by compiler tools. Hence the
examples and programs shall present enhancement in
present technologies of these compilers. The codes
under consideration may be taken from full grown
industry applications ,different techniques [5] available
on parallelization of compilers performing mechanized
parallelization.

Functionability

Applications performing variety of tasks and cater to
different activities may be brought down or substituted
with small codes called as modules. In software
terminology the modularity is not only a way but also a
tool. These self made modules are powerfully
supported by the functions that are readily available
from the library often known as library modules. Large
applications have huge number of functions or modules
calling and delivering at various junctures compelling
both strong and little interdepencies. It becomes
important for modular analysis to know in prior that at
run time or under execution which modules will be
called and in turn to which modules they will call.

Functions of Dynamic Application

There are two applications considered here and both
of them have plentiful functions. Relevant functions
are taken for executing. For instance the first
application takes four steps or states namely
Generation of data, Stacking of data, Migration of
depth and Migration of time. The data that has been
inputted decides which modules will run. Thus
complier has to wait till the run time to induce about
the modules that will come under scanner of
execution.

Figure 1: Modular Interdependency

In Figure-1 the progressive module calling is
presented. One function call other which in turn call
some other and in process some of them call
themselves making it difficult to wrap up the decision
of order in which they will be called due to extreme
interdependencies.

Thus in order to clear the obstacle of inability of
compilers to know in advance the flow of program
control to different modules it requires a complete
program and code knowhow's the problem in
achieving automated parallelization requires the
routine calling timestamps.

FuncProg1()
{
…….
 Get();
…….
}
Main()
{
……

FuncProg1 ();
……
}

FuncProg1()
{
……..
 Get();
……..
}

Get()
{
……….
}

Prog1 Prog2
2

SubClass
2

International Journal of Recent Advances in Science and Technology, 2014; 1(1):1-5
__

Nahar et al International Journal of Recent Advances in Science and Technology, 2014; 1(1): 1-5

www.ijrast.com 3

Extensible Libraries

The procedures or modules in these commercial large
applications have a tendency for numerous schematic
parameter list and different options or conditions.

Figure 2: Varied Arguments and Statements

Applications of this sort are highly inclined to the
definitions available in library modules. Figure-2
shows an example where the arguments list and
different parts for a snippet that goes prodigious in
applications under consideration.

Lingual Hurdles

The compiler transforms the higher level language
into machine level code for executing on processor.
Small application are generally in one language.
Various languages of different flavors and importance
have evolved notably the languages on objected
oriented concepts.

Figure 3: Multi-Lingual Components

In large application the modules and codes will be
found in different languages (Figure-3). Hence, it

becomes mandatory in order to achieve automatic
parallelization the capability of interacting with
multiple language exists.

Endowment Accumulation

The commercial application of SPEC under
consideration uses different low level mathematical
and scientific codes such as matrix multiplications,
discrete Fourier transformations and others. Though
these codes are polished in terms of performance but
still poses difficulties in optimizations to the
compiler.

Erstwhile generations for computer systems with big
performances have designed options to hold the
transformation difficulties in codes of endowments.
These solutions may not be favorable under present
circumstances. Specseis includes numerous lower
level FFT routines mentioned in IEEE Press book of
1979.

The compiler can do its own endowments only when
the endowments prior may be cancelled or retracted.
The other solution can be that the compiler enhances
its ability to negotiate with the modules and the
intricacies posed by the accumulated endowments.

Array Variations and Type Change

For programs and applications those are highly
procedural, interprocedural approaches holds a high
value of importance.
The compiler under consideration accomplish the
similar eventuality through subroutine inline
extensions. Now the complication both the
applications of SPEC under consideration face is
related to arrays that may take any size, pattern and
configuration for caller as well as called codes.

Array Variation

Different variables and datastructures are places in
stack or heap depending on their declarations and
usage in execution.

International Journal of Recent Advances in Science and Technology, 2014; 1(1):1-5
__

Nahar et al International Journal of Recent Advances in Science and Technology, 2014; 1(1): 1-5

www.ijrast.com 4

Figure 4: Array in Memory

The problem arises when the array as shown in
Figure-4 is sent to different modules as reference and
since the returned values may have a different value,
the modules requiring the original value will be
affected by this parallelism effect.

Figure 5. Array Size Variation

The other situation as in Figure-5 is when the array
size is abnormally high and it is passed to several
modules simultaneously. Modules with less running
time may present result and the others will take a
considerable amount of time and the results in either
case will be ambiguous.

Transformations of Array Type

One more problem that is comprehend is some
routines are using array that is defined as double and
others are using integer defined arrays. The data type
and the storage concern has also evolved to be a
addressable complication.

Exits from Loop and IO

The large applications contains various functions,
block of codes and statements which involves Input-
Output statements such as Exit, Break, Continue,
Abort, Goto. These statements will run never or under
certain conditions. When various parts of application
automatically parallelize the repercussions on the
results on certain condition may prove fatal to the
other modules or sometimes to the complete program.

Large-scale Applications Issues

A commercially large package shall produce
considerable issues with the compiler which has been
indicated in this paper. The problems and concerns
raised are important to humongous applications but
are also important to the applications with light nature
and considerable small execution time.

Apart from the facts pointed in earlier sections the
other relentless players that make the parallelization
difficult to achieve are declarations, constants,
pointers, memory allocations and reallocations.

Conclusion

Today till date the parallelization is still not
completely automatic. But there are fine steps and
approaches that may be employed in automatic
parallelizing compilers to generate efficacious parallel
code.
This paper surfaces the options where the compiler
community may enact that enables the automatic
parallelization constructive and valuable for large
scale applications.

First concern is the extreme procedural nature of the
languages and immense interdependence of these
modules on the results of one another.
The second complication is the banking upon of the
program and code on the library modules and
functions.
The third issue is the present scenario of different
programming languages functioning unitedly in close
coupled nature.

Input/output operations are another problem to
successful parallelization. The compiler has to have a
recognizable application that certain I/O statements
are called and run not so often or only under certain
erroneous conditions.

The study presented in this paper is only a small step
in the direction of understanding the characteristics of
large scale applications. Analyzing such applications
takes significant effort. Many more, similar studies

ARRAY

Stack Heap

Class Object

OBJECT

double *myArray=new double[5]
MyClass *myObj=new MyClass

myArray[0]

myArray[1]

myArray[2]

ARRAY

Stack Heap

Class Object

OBJECT

double *myArray=new double[50000]
MyClass *myObj=new MyClass

myArray[0]

myArray[1]

myArray[2]

International Journal of Recent Advances in Science and Technology, 2014; 1(1):1-5
__

Nahar et al International Journal of Recent Advances in Science and Technology, 2014; 1(1): 1-5

www.ijrast.com 5

will be necessary to assist the current generation of
compilers to become truly useful tools for the user of
real world commercial applications and attaining fully
automatic parallelization.

References

1. C. C. Mosher and S. Hassanzadeh. ARCO
seismic processing performance rating suite,
user s guide. Technical report, ARCO, Plano,
TX , 1993.

2. Michael W. Schmidt et. Al. General atomic
and molecular electronic structure system.
Journal of Computational Chemistry,
1993;14(11):1347-1363.

3. W. Blume, R. Doallo, R. Eigenmann, J. Grout,
J. HoeYinger, T. Lawrence, J. Lee, D. Padua, Y.
Paek, B. Pottenger, L. Rauchwerger, and P. Tu.
Parallel programming with Polaris IEEE
Computer, 1996;29(12):78-82.

4. William Blume and Rudolf Eigenmann. An
Overview of Symbolic Analysis Techniques
Needed for the Effective Parallelization of the
Perfect Benchmarks. Proceedings of the
International Conference on Parallel
Processing, pages II 233 II 238, August, 1994.

5. Rudolf Eigenmann, Insung Park, and Michael
J. Voss. Are parallel workstations the right

target for parallelizing compilers? In Lecture
Notes in Computer Science, No. 1239:
Languages and Compilers for Parallel
Computing, pages 300 314, March 97.

Source of Support: NIL
Conflict of Interest: None

