

International Journal of Recent Advances in Science and Technology, 2014; 1(1): 12-18
__

Nahar et al International Journal of Recent Advances in science and technology, 2014; 1(1): 12-18
www.ijrast.com 12

Models for Parallel Computing Review and Perspectives

Nahar hansmukh prayank*, Bhavsar Dharmeshkumar Bhalchandra, Vishal Bhatnagar, Richa Tomer and
S.K. Agarwal

Department of Computer Science, Shri Venkateshwara University, Gajraula Distt- Amroha (U.P), India

ABSTRACT

Today’s confederacy of computers parallelism has now become insidious, so to endow an investigation of the
models seems important for parallel computation. Parallel computing models are specifically subject of attentiveness
with certain matter-of-fact appliance with a perspective of possible expectations applicability. This parallel
computing model paper also describes feat in language of programming and means.

Keywords: Parallel Cost Model, Parallel Computational Model, Parallel Programming Language.

Introduction

Parallel computing is fundamentally an appearance of
computation in which many calculations are carried
out all unitedly. Multiple hardware threads
(multithreading and multiple processor cores)
implement performance processors. Multiple threads
are the smaller unit of large problems which can often
be divided and then solved concurrently. Limited
credulous in applications of instruction level
parallelism is the power consumptions (consequently
heat generation) has become a concern any further due
to power consumption and heat exertion and the
processor clock frequency which cannot be
augmented, , and there is no uncertainty that our
requirements and prospect of machine presentation
will increase further if performance improvement in
processor is required. In the desktop and embedded
both parallel programming will actually apprehend the
widely held of application and system programmers in
the predictable future.
Parallel computing programming model and a
corresponding outlay model are the elements of parallel
computation model.

*Correspondence
Nahar Hashmukh Prayank
Department of Computer Science, Shri Venkateshwara
University, Gajraula Distt- Amroha (U.P), India

A nonrepresentational parallel machine by its
operations (arithmetic operations, spawning , reading
from and writing to shared memory, or sending and
receiving messages), the constraints of when and where
these can be functional, their possessions on the state
of the computation , and how they can be self-
possessed is described by a parallel programming
model.

A parallel programming model also contains, shared
memory programming models, a memory model that
describes how and when a single memory can be
accesses by different parts of a parallel computer
processors. A cost (describes resource occupation and
parallel execution time) is associated with parallel cost
model, and describes prediction of accumulated cost
of composed operations up to entire parallel programs
with each basic operation.
There are several computing parallel programming
models in which there is a unpredictability to
sequential programming, the Von Neumann model is
the initial leading programming model (data flow and
declarative programming). Details of the fundamental
hardware programming models are nonfigurative to
some scale, in which a wider range of parallel
programs languages and systems portability of parallel
algorithms increases.
In this paper a theoretical and practical view both are
been offered by a brief survey of parallel
programming models and observation on their merits
and perspectives. Basic references are articles and
books in the literature such as by Henri[7],

International Journal of Recent Advances in Science and Technology, 2014; 1(1): 12-18
__

Nahar et al International Journal of Recent Advances in science and technology, 2014; 1(1): 12-18
www.ijrast.com 13

Skillicorn[44], Giloi[24], Maggs[38], Skillicorn and
Talia[45,46], Lengauer[35], and Leopold[36].

Survey on Models

In the survey on models two elementary issues in
parallel program execution are found that occur in
implementations of several models.

Different Ways of Parallel Execution

 There are many dissimilar parallel execution
techniques, which describe different ways from any
programmer’s views for execution of parallel
programs when they are created or terminated. There
are two most well-known ways SIMD style and fork-
join parallel execution.
In Fork join style of parallel execution performance
with dynamism at certain fork points in the program,
in which a job is divided into N servers, after service,
sub-jobs have also been processed. Then sub-jobs
have also been processed. From commencement and
the closing stages of program execution, only one
action is executing, but the number of parallel
activities is able to show a discrepancy significantly
throughout execution and in that way become
accustomed to the presently on hand parallelism. The
activity representing on physical processors
requirements within the track is be finished by a
thread package or by the language's run-time system
at run time by the operating system. In contrast to
fork-join style execution, programmer is responsible
for the representing of parallel execution.
In SIMD (Single Instruction, Multiple Data) style
execution at the beginning of program execution
(ingress to main) creates a constant number q of
parallel activities (physical or virtual processors), and
no new parallel activities can be spawned, that is this
number will be kept constant throughout program
execution.
Consequently, when the dynamic scheduling is
automatically provided in the fork-join style
programmer has the conscientiousness for stack
consideration.
 Nested parallelism can also be achieved under SIMD
way of execution, if a collection of n processors are
divided into m subgroups of ni processors each, where
∑ni ≤ n. Subtask in parallel are taken care by each
subgroup. When all subgroups are completed by means
of their subtask they are discarded and the parent group
resumes execution. Group splitting can be nested, and
the group hierarchy forms a tree structure, with the leaf

groups being the currently active ones at any time
during program execution.

Parallel Random Access Machine (PRAM)

The Parallel Random Access Machine (PRAM) model
is a shared-memory abstract machine extension of the
Random Access Machine (RAM) and was proposed by
Fortune and Wyllie [20], this model is used in the
design and analysis of sequential algorithms. The
PRAM supposes shared memory to be connected to a
particular set of processors. Both processors and
memory feed by a global clock and execution of any
instruction consumes exactly one unit of time, which is
autonomous of the processor execution. There is no
limitation on the number of processors for
simultaneous access to shared memory.
The PRAM memory model is known for strict
consistency [3], which says that a write process in
clock cycle c becomes visible globally to all processors
at the beginning of clock cycle c+1.
In the same clock cycle, the effect of multiple
processors writing or reading the same memory
location is determined by the PRAM model.

Realistic Application

It supports deterministic parallel computation is the
unique property of PRAM model, and it is one of the
most programmer friendly models available. There are
abundant algorithm that have been developed for the
PRAM model JaJa[29] (most basic model for parallel
algorithms[32]) and focuses on neat parallelism only.

Implementations

Hardware techniques multithreading and smart
combining networks are cost effective realization of
PRAMs which is possible using, such as the NYU
Ultracomputer [25], SBPRAM by Wolfgang Paul’s
group in Saarbrucken [1,30,40], XMT by Vishkin [49],
and ECLIPSE by Forsell [19]. PRAM is is completely
insensitive to data locality and focuses on parallelism.
The parallel algorithms hypothesis community have
been proposed variants of PRAM model such as the
hierarchical PRAM, asynchronous PRAM [13, 23], the
distributed PRAM (DRAM) ,the block PRAM [4],
and the queuing PRAM (Q PRAM),to name a few.

International Journal of Recent Advances in Science and Technology, 2014; 1(1): 12-18
__

Nahar et al International Journal of Recent Advances in science and technology, 2014; 1(1): 12-18
www.ijrast.com 14

Unrestricted Message Passing

Message passing multicomputer are distributed
memory machine which consists of a number of RAMs
that run asynchronously and communicate via
messages sent over a communication network.
Generally message routing is performed by the
network, so that a processor can send a message to any
other processor without consideration of the particular
network structure. Send and receive commands can be
whichever blocking (processors get synchronized), or
none blocking (the sending processor). The message
passing subsystem forwards the message to the
receiving processor and buffers it there until the
receiving processor executes the receive command.
Group of processors that involve more complex forms
of communication, are called collective communication
operations such as broadcast, multicast, or reduction
operations.
Message passing multicomputer of cost model consists
of two parts. The operations performed treated as in a
RAM. Non blocking communications point to point are
modelled by the LogN model [14]. The latency N
specifies the time that a message requires one word to
be transmitted from sender to receiver. The visual
projection k specifies the time that the sending
processor is occupied in executing the send command.
The time that must pass between two successive send
operations of a processor is given by gap g, and thus
models the processor’s bandwidth to the
communication network. The processor count P gives
the number of processors in the machine. The LogN
model has been extended to the LogGN model [5], by
introducing bandwidth for longer messages parameter
G.

Realistic Application: CSP (Communicating
Sequential Processes) is one of the message passing
models that have been used in the hypothesis of
concurrent and distributed systems from several years.
By means of the explanation of hawker autonomous
sagacious ephemeral libraries, message passing became
the overriding programming style on huge parallel
computers systems.

Implementations: In the early 1990s portable message
passing libraries such as PVM and MPI were replaced
by vendor specific libraries. Later MPI was extended in
the MPI 2.0 standard (1997) by fork join style and one
sided communication. FORTRAN, C and C++ have
been defined by MPI interfaces.

Bulk Synchronous Parallelism

This model was proposed by Valiant in 1990 [48] and
modified by McColl [39], a structure of message
passing computations as a progression of obstruction
unconnected super steps, where each super step
consists of a computation stage operating on local
variables only, followed by a global interprocessor
communication phase. Only three parameters are
involved in the cost model (number of processors p,
point to point network bandwidth g, and message
latency), only if the maximum local work for each
processor and the maximum communication volume
for each processor are identified. By summing up the
costs of all executed super steps then cost for a
program is then simply determined.

Realistic Application

Reasonable predictions of execution time to guide
algorithmic design decisions and balance trade-offs are
derived using BSP model.

Implementations

For an SIMD execution style the BSP model is mainly
realized in the form of libraries such as BSPlib [27] or
PUB [9].

Partitioned Global Address Space and
Asynchronous Shared Memory

A number of threads for execution have access to a
general memory in the shared memory model, the
threads of execution run asynchronously.
A current improvement is transactional memory ([26],
[2]), which is adopted by the concept of transaction
known from database programming. A sequential
code section enclosed in a statement which fail
completely or performs completely to share memory
as an infinitesimal operation is called a transaction.

Realistic Application

Programming for small scale parallel computers,
shared memory programming has become the leading
form, particularly SMP systems. SMP nodes, shared
memory programming has been combined with
message passing concepts to consist clusters of large
scale parallel computers.

International Journal of Recent Advances in Science and Technology, 2014; 1(1): 12-18
__

Nahar et al International Journal of Recent Advances in science and technology, 2014; 1(1): 12-18
www.ijrast.com 15

Implementations

A shared memory parallel language for algorithmic
multithreading is Cilk [8].
With the arrival of multicore processors OpenMP is
gaining popularity and may finally substitute Pthreads
absolutely. Structured parallelism in a combination of
SIMD and fork join styles are provided by OpenMP.
Shared memory via the concept of tuple spaces, which
is much more nonrepresentational than one
dimensional addressing, partially resembles the access
to a relational database provided by the Linda system
[10].

Data Parallel Models

SIMD and vector computing are included by Data
parallel models, data parallel computing, systolic
computing cellular automata, stream data processing,
and VLIW computing.
The component wise application of the same scalar
computation to several elements of one or several
operand vectors, creating a result vector are involved
by data parallel computing. All element computations
must be autonomous of each other, and may therefore
be executed in a pipelined way, or any order in parallel.

Realistic Application
An early vector super computer in the 1990s and 1980s
were based on the paradigm of Vector computing and
is still a necessary ingredient of contemporary elevated
performance computer architectures. It is a special case
of the SIMD computing paradigm. For the most part
contemporary elevated end processors include vector
units extending their instruction set by SIMD/vector
operations. In high performance processors for the
digital signal processing (DSP) arena, VLIW in today
also a popular concept.

Implementations
APL [28] is an early SIMD programming language.
Some SIMD languages are Vector-C [37] and C* [43].
Vector computing and even a simple form of data
parallelism are supported by Fortran 90. It became a
full-fledged data parallel language with the HPF [31]
extensions. ZPL [47] NESL Data parallel C and
Modula-2* [42] are included by other data parallel
languages.

Models of Parallel-Task and Graphs of Job

Every program or applications may be well thought-out
as a collection of jobs where each job is solving part of
the problem. Jobs may also communicate with each
other during their execution or existence, or may
recognize inputs only as per requirement to their start
off, and transmit results to other jobs only while they
will be terminated. Jobs may generate other jobs in a
fork-join way, and this may be done even in a forceful
and data reliant approach. Collections of such jobs
possibly will be represented by a job graph, where
nodes represent jobs and curved like parts represent
data inter-dependencies.

Realistic Application
In the most recent years grid computing has gained
substantial desirability, mostly motivated next to the
vast computing control necessary to get to the bottom
of impressive face up to inconvenience in ordinary and
life sciences. The integration of reconfigurable
hardware with microprocessors on single chips has
gained some interest using hardware with software.

Implementations
The MIT Alewife mechanism with the ID functional
programming language [3] is a well-known instance
intended for parallel data flow computation. There are
rather a lot of grid middleware’s, most significantly
Globus [22] and Unicore [17].

Methodologies of General Parallel Programming

In this section, a detailed property of extensively used
approaches to the parallel software has been revised.

An existing sequential program is actually start
for the same problem, which is additional constrained
of exceedingly high consequence for software industry
that has to port a host of inheritance code to parallel
platforms in these existence.

PCAM Method of Foster

The design of a parallel program suggested by Foster
[21] that have to begin from an active (sequential if
possible) algorithmic elucidation to a computational
trouble by dividing it into various small jobs and
identifying inter-dependencies involving these, that
possibly will outcome in communication and
synchronization. Partitioning and communication are
first two design phases for a model in which there is no
restriction on the number of processors. To decrease
inner communication and synchronization associations
a comprehensive job to local memory accesses, the

International Journal of Recent Advances in Science and Technology, 2014; 1(1): 12-18
__

Nahar et al International Journal of Recent Advances in science and technology, 2014; 1(1): 12-18
www.ijrast.com 16

jobs are agglomerated to comprehensive jobs. finally,
the comprehensive jobs are programmed to substantial
processors to balance load and additional
communication.

Parallelization Increment

In many technical programs most of the execution time
is spent in a fairly small part of the code. HPF and
OpenMP are some instruction based parallel
programming languages, FORTRAN and C are
considered as a semantically expandable for sequential
maintained language allow initialisation from
sequential source code to parallelize incrementally.
Frequently, the most concentrated interior loops are
recognized and parallelized first by inserting
commands.

Autonomous Parallelization

Autonomous parallelization has high importance to
industry of sequential inheritance code but it is rather
difficult. There are two forms: static parallelization and
run time parallelization.

Library-Based Parallel Programming and Skeleton
Based Programming

Skeleton programming [12, 41] is structured parallel
programming which restricts the compositions of only
a few, predefined patterns, which provide many ways
of expressing parallelism, called skeletons.
Nonspecific, transferable, and reusable essential
program building blocks for which parallel
implementations may be presented are skeletons [12,
15]. Skeletons are derived from advanced command
functions as known from functional programming
languages. P3L [6, 41], SCL [15, 16], eSkel [11],
MuesLi [34], or QUAFF [18], are skeleton based
parallel programming system that usually provides a
moderately small, fixed set of skeletons. Each skeleton
is an illustration of a exclusive way of using
parallelism, in a particularly well thought-out type of
computation such as parallel divide and conquer, data
parallelism, job farming, or pipelining.

Conclusion

The re-rating of parallel programming models provides
assumption about the future of parallel programming
models and surfaces the existing trends.

Physical and technical necessity will make the future of
parallel computing. By combining hardware multi
cores, multithreading, SIMD units, accelerators and on
chip communication systems parallel computer
architectures will be more advance, which increase the
requirement for the programmer and the compiler to
ask for parallelism, coordinate computations and
handle data position in order to achieve efficient
performance e.g. the Cell BE processor. Parallel
computing is relatively simple, purely sequential
languages will stay on for definite applications that are
not performance decisive, applications which are not
performance decisive such as word processors. Aspect
oriented and view based programming and model
driven developments are new software engineering
techniques that may assist in complexity management.
Tools that allow to more or less automatically port
sequential inheritance software are of very high
significance. Useful models are deterministic and time
predictable parallel. With the beginning of new parallel
language, compilers and tools technology must
maintain swiftness. If compilers are impulsive at
beginning and generate poor code then the most
advanced parallel programming language is destined to
failure, as possibly was observed in the 1990s where
HPC programmers instead switched to the lower level
MPI as their main programming model for HPF in the
high performance computing arena [31].

References

1. Ferri Abolhassan, Reinhard Drefenstedt, Jorg
Keller, Wolfgang J. Paul, and Dieter Scheerer.
On the physical design of PRAMs. Computer J,
1993;36(8):756-762.

2. Ali-Reza Adl-Tabatabai, Christos Kozyrakis,
and Bratin Saha. Unlocking concurrency:
multicore programming with transactional
memory. ACMQueue, (Dec. 2006/jan. 2007),
2006.

3. Anant Agarwal, Ricardo Bianchini, The MIT
Alewife machine: Architecture and
performance. In Proc. 22nd Int. Symp.
Computer Architecture, pages 2-13, 1995.

4. A Aggarwal. A. K.Chandra, and
M.Snir.Communication complexity of PRAMs.
Theoretical Computer Science, 71:3-28, 1990.

5. Albert Alexandrov, Mihai F. Ionescu, Klaus E.
Schauser, and Chris Scheiman. LogGP:
Incorporating long messages into the LogP
model for parallel computation. Journal of
Parallel and Distributed Computing, 44(1):71-
79, 1997.

International Journal of Recent Advances in Science and Technology, 2014; 1(1): 12-18
__

Nahar et al International Journal of Recent Advances in science and technology, 2014; 1(1): 12-18
www.ijrast.com 17

6. Bruno Bacci, Marco Danelutto, Salvatore
Orlando, Susanna Pelagatti, and Marco
Vanneschi. P3L:A structured high level
programming language and its structured
support. Concurrency-Pract. Exp., 7(3):225-225,
1995.

7. Henri E. Bal, Jennifer G. Steiner, and Andrew S.
Tanenbaum. Programming Languages for
Distributed Computing Systems. ACM
Computing Surveys 21(3):261-322,
September1989.

8. Robert D. Blumofe, Christopher F. Joerg,
Bradley C. Kuszmaul. Cilk: an efficient multi-
threaded run-time system. In Proc. 5th ACM
SIGPLAN Symp. Principles and Practice of
Parallel Programming, pages 207-216, 1995.

9. Olaf Bonorden, Ben Juurlink, Ingo von Otte,
and Ingo Rieping. The Paderborn University
BSP (PUB) Library. Parallel Computing,
29:187-207, 2003.

10. Nicholas Carriero and David Gelernter. Linda in
context. Commun. ACM, 32(4):444-458, 1989.

11. Murray Cole. Bringing skeletons out of the
closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing,
30(3):389-406, 2004.

12. Murray I. Cole. Algorithmic Skeletons:
Structured Management of Parallel
Computation. Pitman and MIT Press, 1989.

13. Richard Cole and Ofer Zajicek. The APRAM:
Incorporating Asynchrony into the PRAM
model. In Proc. 1st Annual ACM Symp. Parallel
Algorithms and Architectures, pages 169-178,
1989.

14. David E. Culler, Richard M. Karp, David A.
Patterson, Abhijit Sahay, Klaus E. Schause.
LogP: Towards a realistic model of parallel
computation. In Principles & Practice of Parallel
Programming pages 1-12, 1993.

15. J. Darlington, A. J. Field, P. G. Harrison.
Parallel Programming Using Skeleton
Functions. In Proc. Conf. Parallel Architectures
and Languages Europe, pages 146-160. Springer
LNCS 694, 1993.

16. J. Darlington, Y. Guo, H. W. To, and J. Yang.
Parallel skeletons for structured composition. In
Proc.5th ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming. ACM Press,
July 1995. SIGPLAN Notices 38(3), pp. 19-28.

17. Dietmar W. Erwin and David F. Snelling.
Unicore: A grid computing environment. In
Proc. 7th Int.l Conference on Parallel Processing
(Euro Par), pages 825-834, London, UK, 2001.
Springer-Verlag.

18. Joel Falcou and Jocelyn Serot. schematic
semantics applied to the implementation of a
skeleton based parallel programming library. In
Proc. ParCo-2007. IOS press, 2008.

19. Martti Forsell. A scalable high performance
computing solution for networks on chips. IEEE
Micro, pages 46-55, September 2002.

20. S. Fortune and J. Wyllie Parallelism in random
access machines. In Proc. 10th Annual ACM
Symp. hypothesis of Computing, pages 114-118,
1978.

21. Ian Foster. Designing and Building Parallel
Programs. Addison Wesley, 1995.

22. Ian Foster. Globus toolkit version 4: Software
for service oriented systems. In Proc. IFIP Int.l
Conf. Network and Parallel Computing, LNCS
3779, pages 2-13, Springer, 2006.

23. Phillip B. Gibbons, A. More Practical PRAM
Model. In Proc. 1st Annual ACM Symp. Parallel
Algorithms and Architectures, pages 158-168,
1989.

24. W. K. Giloi. Parallel Programming Models and
Their Interdependence with Parallel
Architectures. In Proc. 1st Int. Conf. Massively
Parallel Programming Models. IEEE Computer
Society Press, 1993.

25. Allan Gottlieb. An overview of the NYU
ultracomputer project. In J. J. Dongarra, editor,
Experimental Parallel Computing Architectures,
pages 25-95. Elsevier Science Publishers, 1987.

26. Maurice Herlihy and J. Eliot B. Moss.
Transactional memory Architectural support for
lock free data structures. In Proc. Int. Symp.
Computer Architecture, 1993.

27. Jonathan M. D. Hill, Bill McColl. BSPlib: the
BSP Programming Library. Parallel Computing,
24(14): 1947-1980, 1998.

28. Kenneth E. Iverson. A Programming Language.
Wiley, New York, 1962.

29. Joseph JaJa. An Introduction to Parallel
Algorithms. Addison Wesley, 1992.

30. Jorg Keller, Christoph Kessler, and Jesper Traff.
Practical PRAM Programming. Wiley, New
York, 2001.

31. Ken Kennedy, Charles Koelbel, and Hans Zima.
The rise and fall of High Performance Fortran:
an historical article lesson. In Proc. Int.
Symposium on the History of Programming
Languages (HOPL III) June, 2007.

32. Christoph W. Kessler. A practical access to the
hypothesis of parallel algorithms. In Proc. ACM
SIGCSE’04 Symposium on Computer Science
Education, March 2004.

International Journal of Recent Advances in Science and Technology, 2014; 1(1): 12-18
__

Nahar et al International Journal of Recent Advances in science and technology, 2014; 1(1): 12-18
www.ijrast.com 18

33. Christoph W. KeBler and Helmut Seidl. The
Fork95 Parallel Programming Language:
Design, Implementation, Application. Int. J.
Parallel Programming, 24(1):17-50, February
1997.

34. Herbert Kuchen, A skeleton library. In. Proc.
Euro Par’02, pages 620-629, 2002.

35. Christian Lengauer. A personal, historical
perspective of parallel programming for high
performance. In Gunter Hommel, editor,
Communication Based Systems (CBS 2000),
pages 111-118, Kluwer, 2000.

36. Claudia Leopold. Parallel and Distributed
Computing. A survey of models, paradigms and
approaches. Wiley, New York, 2000.

37. K. C. Li and H. Schwetman. Vector C: A Vector
Processing Language. J. Parallel and Distrib.
Comput., 2:132-169, 1985.

38. B. M. Maggs, L. R. Matheson, and R. E. Tarjan.
Models of Parallel Computation: a Survey and
Synthesis. In Proc. 28th Annual Hawaii Int.
Conf. System Sciences, volume 2, pages 61-70,
January 1995.

39. W. F. McColl. General Purpose Parallel
Computing. In A. M. Gibbons and P. Spirakis,
editors, Lectures on Parallel Computation. Proc.
1991 ALCOM Spring School on Parallel
Computation, pages 337-391. Cambridge
University Press. 1993.

40. Wolfgang J. Paul, Peter Bach, Michael
Bosch.Real PRAM programming. In Proc. Int.
Euro Par Conf.’02, August 2002.

41. Susanna Pelagatti. Structured Development of
Parallel Programs. Taylor Francis, 1998.

42. Michael Philippsen and Walter F. Tichy Modula
and its Compilation. In Proc. 1st Int. Conf. of

the Austrian Center for Parallel Computation,
pages 169-183. Springer LNCS 591, 1991.

43. J. Rose and G. Steele. C*: an Extended C
Language for Data Parallel Programming.
Technical Report PL87-5, Thinking Machines
Inc., Cambridge, MA, 1987.

44. D. B. Skillicorn. Models for Practical Parallel
Computation. Int. J. Parallel Programming,
20(2):133-138, 1991.

45. David B. Skillicorn and Domenico Talia,
editors. Programming Languages for Parallel
Processing. IEEE Computer Society Press,
1995.

46. David B. Skillicorn and Domenico Talia.
Models and Languages for Parallel
Computation. ACM Computing Surveys, June
1998.

47. Lawrence Snyder. The design and development
of ZP.L In Proc. ACM SIGPLAN Third
symposium on history of programming
languages (HOPL III). ACM Press, June 2007.

48. Leslie G. Valiant. A Bridging Model for Parallel
Computation. Comm. ACM, 33(8):103-111,
August 1990.

49. Xingzhi Wen and Uzi Vishkin. Pram-on-chip:
first commitment to silicon. In SPAA ’07:
Proceedings of the nineteenth annual ACM
symposium on Parallel algorithms and
architectures, pages 301-302, New York, NY,
USA, 2007.

Source of Support: NIL
Conflict of Interest: None

